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gren & Thomas (1982) report on the application of 
the cumulant expansion (1) ' . . .  that such refinements 
have not converged successfully, rather than that they 
have not been tried. Our refinement of ten y values 
for hydrogen and four for oxygen in the water 
molecule of K2C204. H20 resulted in large standard 
deviations and large correlations. The results of the 
refinement were not considered meaningful'. Finally, 
Johnson (1980) himself has noticed deficiencies of 
the cumulant expansion and locates them primarily 
in the 'interactions among even-order (real) and odd- 
order (imaginary) cumulant coefficients'. As a way 
out, Johnson has established the a formalism with 
which several structures have been successfully 
refined in recent years including structures containing 
mobile atoms in ionic conductors such as AgI (Cava, 
Reidinger & Wuensch, 1977). Compared to the 
cumulant expansion, the a formalism ditters 
primarily in that the exponential form of the tem- 
perature factor is discarded and the anharmonic terms 
are expanded into a series of quasi-Hermite poly- 
nomials. There is an unequivocally determined 
inverse Fourier transform to the c~ formalism that can 
serve as a p.d.f.; see also Zucker & Schulz (1982). 
These results from the literature may have their cause 
in the deficiency of the cumulant expansion that has 
been pointed out in this paper. 

The experimental evidence reported here may not 
be conclusive for ruling out the cumulant expansion 
as a useful description of anharmonic motions. 

However, we recommend controlling the results 
obtained with the cumulant expansion by means of 
corresponding results obtained with other anhar- 
monic expansions. 

I am indebted to Professor Dr W. Gromes, 
Mathematisches Institut der Universifiit Marburg, for 
having proved that the Marcinkiewtcz theorem is 
generally valid. 
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Abstract 

The error in the temperature factor arising from the 
use of anharmonic perturbation theory is investigated 
for a one-dimensional one-particle potential by com- 
parison with an exact evaluation of the Fourier trans- 
form of the Boltzmann probability density. Results 
are presented for a range of values of cubic and 
quartic coefficients for temperature factors derived 
from moment or cumulant expansions about the har- 
monic probability density function. It is found that 
either expansion provides an adequate approxima- 
tion to the anharmonic temperature factor for moder- 
ately small anharmonicity but that both expansions 
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become increasingly Inadequate as the anharmonicity 
gets larger. 

1. Introduction 

For temperatures where classical approximations are 
adequate, the starting point for the derivation of the 
anharmonic temperature factor is the Boltzmann one- 
particle probability density function (p.d.f.), 
exp [ - V ( u ) / k B T ] ,  where V(u) is the one-particle 
potential (OPP), u is the atomic displacement from 
a reference position, kB is the Boltzmann constant 
and T is the absolute temperature. Expansions about 
the harmonic (Gaussian) p.d.f, are then made as 
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moment expansions (e.g. Dawson, Hurely and Mas- 
len, 1967; Kurki-Suonio, Merisalo & Peltonen, 1979; 
Scheringer, 1984a). Approximate expressions for the 
temperature factor are then found by evaluating the 
ensemble average (exp iQ.  u) for the corresponding 
approximate distribution function; here Q is the scat- 
tering vector. The cumulant expansion (Mair, 1980) 
may be derived from these results. 

For either the moment or the cumulant expansions 
the temperature factors are approximations to the 
exact temperature factor given by the Fourier trans- 
form (FT) of an 'exact' Boltzmann p.d.f, defined 
hereafter by an OPP expanded to the fourth degree 
in u. In order to examine the nature of this approxima- 
tion the exact and approximate temperature factors 
have been evaluated (§§ 2 and 3) for an OPP with 
cubic and quartic anharmonicity. Since the exact tem- 
perature factor must be obtained numerically, atten- 
tion has, for illustrative purposes, been restricted to 
a one-dimensional p.d.f. The effect of the perturbation 
approximation is then discussed in § 4. 

2. Exact and approximate O P P  temperature factors 

The magnitude of the errors in the various approxima- 
tions is calculated for a simple one-dimensional p.d.f. 
involving only cubic and quartic anharmonicity. 

When the potential 

V(u) = au2/2 + bu3 + CU 4 

is expressed in dimensionless units by means of the 
transformation u = (kBT/a) ' /2x,  the exact Boltzmann 
p.d.f, becomes 

p ( x ) = e x p ( - x 2 / 2 - r x 3 - s x 4 ) / Z ,  (1) 

where r = b(kBT/a3) 1/2 and s = cknT/a  2 measure the 
strength of the anharmonicity and are respectively of 
order A and AZ in the Van Hove ordering parameter 
(see Mair, 1980).* The (rescaled) partition function 

o o  

Z -- j" exp ( - x 2 / 2  - rx 3 -  sx 4) dx (2) 
- -CO 

is a constant that normalizes p(x)  so that it is a proper 
probability density function. The exact temperature 
factor corresponding to this p.d.f, is 

T(Q)  = T ( q ) =  ~ p(x)  exp (iqx) dx (3) 
- -CO 

CO 

= ~ p(x)  cos qx dx 
- - 0 0  

CO 

+ i I p(x)  sin qx dx (4) 
- -CO 

* We agree with Scheringer [1984a, Appendix 4 (supplementary 
publication No. SUP39686)] that the cumulant expansions in Mair 
(1980, equations 8, 9, and 14) are not exact FT's of the Boltzmann 
p.d.f. They are, however, approximations to the exact FT correct 
to order A 2. 

for q=(k~T/a)~/2Q.  If the probability density is 
expressed in terms of the original variable u the value 
of Z in (1) must be replaced by Zac, = (k~T/a) ' /2Z.  
The density function p(x)  is well defined if s is greater 
than zero (or if r = s = 0) and provided this is so all 
the above integrals are convergent and can be evalu- 
ated numerically. 

The so-called moment expansion for T(q) is 
derived by expanding exp ( - r x  3 -  sx 4) in powers of 
x, collecting terms for like powers of A and performing 
term by term integration in the integrals of (4). To 
be consistent, all terms up to the same maximum 
order in h should be included. Several examples occur 
in the literature (e.g. Willis, 1969; Kurki-Suonio et 
al., 1979; Tanaka & Marumo, 1983), where some 
terms of order h 2 have been included whilst others 
have been omitted. The temperature factor in (8) of 
Scheringer (1984a) is equivalent to the moment 
expansion taken to order A in the cubic coefficients 
of the OPP and to order A 2 in the quartic coefficients 
(the term in r 2 does not occur). It is possible that in 
certain cases the omitted terms may be numerically 
insignificant, but it would be unwise to make this 
assumption a priori. 

For the case considered here, the result to order 
A 2 is 

where 

T~(q) = N exp (-q2/2)[1 + ir He3(q) 

- s He4(q ) -  r 2 He6(q)/2] 

= N e x p ( - q 2 / 2 ) [ l + i r ( q 3 - 3 q )  

- s ( q 4 - 6 q 2 + 3 )  

- r2(q 6 -  15qa+45q 2 - 15)/2], (5) 

N = 1/(1 - 3 s +  15r2/2) = (27r)l/2/Z,,,. 

Z,, is the approximate rescaled partition function and 
the He, (q)  are Hermite polynomials as defined by 
Magnus & Oberhettinger (1949) (see also Cram6r, 
1946, p. 133). The corresponding cumulant expansion 
is 

T~(q) = exp [ -q2 /2  + i r ( q 3  3q) - s ( q 4 -  6q2) 

+ r2(9q4-36q2)/2], (6) 

which is finite as q tends to infinity only if 9r2< 2s. 
The inverse FT of (5) is 

p m ( x ) = e x p ( - x 2 / 2 ) [ 1 - r x 3 - s x 4 + r 2 x 6 / 2 ] / Z m ,  (7) 

which always goes negative for some value of 
x (=s  -~/4 for r =  0) and so is not a proper p.d.f. The 
inverse FT of (6), pc(x), also behaves in this way 
because, according to a theorem due to Marcink- 
iewicz (see Lukacs, 1970, and also Scheringer, 1984b) 
it cannot be the FT of any p.d.f. The numerical 
calculations below show that it goes negative at about 
the same value of x as pm(x) does. 
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Useful parameters for expressing the degree of 
anharmonicity are the skewness, y~, and the kurtosis, 
Y2, defined in terms of the moments of p(x) by the 
relations 

y~ = (x3)/ (x2) 3/2, 
~2 = ((x4) -- 3(X2) 2) / (x2) 2. 

(8) 
(9) 

For a harmonic p.d.f, both '~1 and y2 are zero and yl 
is also zero when r is zero. 

3. Numerical results 

The results presented here were obtained by numeri- 
cal integration and a twelve-point Gaussian quad- 
rature formula was found to be adequate. For the 
purpose of graphical presentation of the results it is 
convenient to separate the temperature factor into its 
real and imaginary parts Tr(q) and T~(q) and the 
p.d.f, into even and odd contributions pe(x) and 
p°(x). If r is zero T~(q) and p°(x) are zero also. The 
calculated temperature factors and p.d.f.'s are presen- 
ted in Figs. 1 ( a) -  (h). 

Since temperature factors constitute the more or 
less directly observed data the main concern here is 
the agreement between the exact and approximate 
temperature factors. If either of the approximate tem- 
perature factors, Tin(q) or To(q), agree sufficiently 
well with the exact T(q), the p.d.f, given by (1) for 
the corresponding values of r and s may be taken as 
a good estimate. If the agreement is poor then the 
perturbation expansion is inadequate and some other 
method of analysing the temperature factor is 
required. The agreement between the p.d.f.'s in the 
figures is of secondary importance. 

(a) Pure quartic anharmonicity (r = O, s ~ O) 
For the case s=0 .01 ,  i.e. for small but significant 
anharmonicity, with kurtosis Y2 = -0.157, the 
approximate and exact T(q) effectively coincide. The 
p.d.f.'s also coincide, except for a barely discernible 
deviation of either pro(x) or pc(x) near x = 0 .  For 
x >  3.2 both pro(X) and pc(x) become negative, but 
negligibly so. 

Fig. l (a)  is for s = 0.0276 (Y2 = -0.284). This value 
of s corresponds to the room-temperature values of 
a and c derived by Kontio & Stevens (1982) for an 
aluminium atom at a site of 43 m symmetry in a VA1 
alloy. The model then provides an approximate one- 
dimensional analogue of the motion of the A1 atom 
in a (100) direction. In Fig. l (a) ,  Tin(q) is indistin- 
guishable from To(q) and is starting to show a small 
deviation from T(q). Deviations of pro(x) or pc(x) 
from p(x) also become just noticeable for both small 
and large x; both pro(X) and pc(x) go negative for 
x>2 .5 .  

In Figs. l(c), (d) the anharmonicity is very large 
(s = 0.1, y2 = -0.463). There are now large deviations 

of both Tin(q) and To(q) from T(q), especially at 
small values of q where Tin(q) and To(q) are both 
greater than unity. In this region, Tin(q) is a poorer 
approximation to T(q) than is To(q). The correspond- 
ing p.d.f.'s are much too large at small x and both 
pro(x) and pc(x) are strongly negative for x >  1.8. 

(b) Cubic and quartic anharmonicity (r ~ 0, s ~ 0) 

Fig. l(e) is for r = - 0 . 0 5 ,  s=0.0276 (T~=1.55, 
T2 = 0.427). These values are again chosen to give a 
one-dimensional analogue of the room-temperature 
motion of an aluminium atom in the same VA1 alloy 
but now along a (111) direction. 

The exact and approximate curves for the real part 
of T(q) in Fig. l(e) are in good agreement but the 
small imaginary component is noticeably different for 
the exact and approximate cases near the turning 
points. The deviations are, however, still within the 
error bar based on the experimental uncertainties 
quoted by Kontio & Stevens (1982) for their a,/3 and 
T- The even and odd components of the p.d.f, are 
shown in Fig. 1 (f)  for x > 0. The deviations observed 
in Ti(q) are reflected in p°(x) for 1.5 < x < 3.5. Note 
that for both the moment and cumulant approxima- 
tions the odd component p°(x) is greater than the 
even component pe(x) for 2.2 < x < 3'5, SO that for 
the corresponding range of negative values Pm (x) and 
pc(x) are negative. 

Fig. 1 (g) shows that when r is doubled the disagree- 
ment becomes larger, especially for the imaginary 
component Ti(q), and perturbation theory is becom- 
ing inadequate. For this case To(q) is in perceptibly 
poorer agreement with T(q) than is Tm (q). Moreover, 
since in this case 9r 2 = 0.09> 2s = 0.552, To(q) diver- 
ges to infinity as q increases, and so pc(x) is undefined. 
This phenomenon is discussed by Scheringer (1984b). 
Again, pm(X) goes negative in the range -3.1 < x < 
-2.1.  Clearly, a larger value of r would lead to a 
more dramatic breakdown of perturbation theory. 

4. Discussion 

The above results show that when the anharmonicity 
is moderately small both the cumulant expansion 
form of the temperature factor and the moment 
expansion form provide an adequate approximation 
to the anharmonic temperature factor in practical 
numerical terms. However, these perturbation-theory 
expansions become increasingly inadequate as the 
anharmonicity gets larger. The addition of higher- 
order terms will not necessarily improve the approxi- 
mation, as the perturbation expansions ultimately 
diverge (see Scheringer, 1984a, for a discussion of 
the divergence of the moment expansion). The 
moment expansion form has an essential singularity 
at the origin so that the series does not converge for 
any finite value of the strength of the anharmonic 
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Fig. 1. For the values of the parameters given below each part of  the figure, the full line shows either the exact value of p(x) given by 
equation (1) or its Fourier transform, T(q). The broken line gives the result for the corresponding moment expansion, Tin(q) or 
p,,(x), while the dotted line gives the result for the cumulant expansion, To(q) or pc(x), if it is distinct from the result for the moment 
expansion. For (e)-(h) the p.d.f, has even and odd components, pe(x) and p°(x), and the corresponding temperature factor has real 
and imaginary components, Tr(q) and T'(q). 
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component of the potential. On the other hand, it is 
asymptotic in character and when only a finite number 
of terms are taken the error is less in magnitude than 
the first term omitted. Thus, although it can be useful 
numerically for sufficiently weak anharmonicities its 
accuracy is essentially limited and, for strong anhar- 
monicities, may not be adequate. This is particularly 
relevant when dealing with data of such high accuracy 
that deviations of only a few percent in the tem- 
perature factor become significant. 

Since for the moment expansion, Tin(q), the inverse 
FT, pro(x), always exists, one might have hoped that 
pro(x) could be used to represent the p.d.f, even if 
the perturbation approximation were poor, i.e. if 
T,, (q) differed significantly from T(q). However, the 
examples considered show that pro(X) then has 
regions where it takes significantly negative values 
despite the fact that it is supposed to be approximat- 
ing a positive function. 

Similar considerations apply to the cumulant 
expansion. It can be a useful approximation but 
because of the theorem due to Marcinkiewicz (see 
Lukacs, 1970) it cannot be the Fourier transform of 
any p.d.f.; specifically, it must always be positive and 
therefore cannot follow through a zero of the tem- 
perature factor to the negative values that must occur 
somewhere. Another mathematical difficulty relating 
to this zero occurs because the cumulant form arises 
on taking the logarithm of the moment form and so 
the series for the cumulant form cannot possibly 

converge for values of q beyond the zero where the 
logarithm has its singularity. 

The numerical results do not allow a clear choice 
between the moment and the cumulant expansions. 
Significant differences between the two approxima- 
tions appear only when perturbation theory is starting 
to break down. Under these circumstances a pro- 
cedure that does not rely on perturbation theory is 
desirable. If one wishes to retain the OPP approach 
a suitable procedure would be to express the tem- 
perature factor directly as the FT of the exact 
Boltzmann distribution in accordance with equations 
(1), (2) and (3). Such computations are well within 
the capabilities of modern large computers. 
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The Estimation of Average Molecular Dimensions. 
2.* Hypothesis Testing with Weighted and Unweighted Means 
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Abstract 
The average value (/z) of a molecular dimension may 
be estimated by a weighted (xw) or unweighted (~,.) 
mean. Computer simulations show that ~, can be 
used in hypothesis tests, since the distribution of 
(~, , - /z) /o ' (~,)  is closely approximated by Student's 
t distribution. In contrast, hypothesis tests based on 
the weighted mean are inexact and potentially mis- 
leading. 

* Part I: Taylor & Kennard (1983). 
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I. Introduction 
In a previous paper (Taylor & Kennard, 1983) we 
discussed some of the problems involved in estimating 
average molecular dimensions from crystallographic 
data. The average value of k observations of a 
molecular dimension (xi, i=  1, 2 , . . . ,  k) is usually 
estimated in one of two ways. The simplest procedure 
is to calculate the unweighted mean, ~,: 

k 
x ,= ~'. x,/k, (1) 

i=l 
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